

Quench Behaviors of Coated Conductors Subject to Transient and Localized Thermal Disturbances

Quench

"The process which occurs when any part of a magnet goes from the superconducting to the normal resistive state.

Because normal-state resistivities and current densities are both high, intense local heating will ensue, taking the quench point and surrounding region to temperatures far above critical."

• Risk

"The local temperature rise may be sufficient to char the insulation or even melt the conductor."

(M. N. Wilson, Superconducting Magnets)

Amemiya Group, Kyoto University

4. Hot-spot temperature estimation

2. Example of thermal disturbance

• Beam loss

Simulation by PHITS

"Particle and Heavy Ion

Transport code System"

code developed at JAEA

• Number : 2×10^9 pps

• Energy : 430 MeV

• Radius : 5 mm

• Source : C

By some reasons, a particle beam deviates from its orbit and hits a magnet in an accelerator.

Transient and localized thermal disturbances

Risk of Quench

5. Voltage, temperature, Joule heating 30K 3.0T 151A 40K 3.0T 112A 30K 3.5T 64A **Burnt out** 200 Qd = 0.14 Od = 2.53 J Qd = 0.22 $V_{\rm total}(mV)$ Qd = 2.38 J Qd = 0.13 J Qd = 0.18 J V_{total} : Voltage between VT0-13 500 £ 400 300 Tc = 69.9 K Tc = 70.2 K Ts = 53.3 K Ts = 44.1 K Tc = 70.2 K ^{de-sh}200 Ts = 35.0 K $T_{\text{hot-spot}}$: Temperature between VT6-7 (E 500 400 300 Do Me 200 100 0 0.5 1.5 8 12 0 2 0 0.5 1.5 1 Time (s) Time (s) Time (s) Power : average Joule power between VT6-7 Quench Burn out : current can not flow in sample Recover

3. Quench experiment of short sample

6. Beam injection test at HIMAC

in the next experiment

End of heater

Physics experimental room

T = 15 - 50 K B = up to 5 T*I* = up to 500 A

Sample Information

Specifications of sample	
Туре	SCS
Width of sample	4
Thickness of Cu	20 µ
Thickness of HTS	~
Thickness of Ag	~3
Thickness of substrate	5

VT : voltage tap TS : temperature sensor Cu-T : copper terminal

Thermal Magnet disturbance 0.4 0.2 **x**(m) 0 -0.2 Carbon ion beam -0.4 0 **z**(m) 0.2 0.4 -0.4 -0.2